Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Hyaluronic acid-functionalized graphene-based nanohybrids for targeted breast cancer chemo-photothermal therapy
Publication . Lima-Sousa, Rita; Melo, Bruna L.; Mendonça, António; Correia, I.J.; Melo-Diogo, Duarte de
Nanomaterials’ application in cancer therapy has been driven by their ability to encapsulate chemotherapeutic drugs as well as to reach the tumor site. Nevertheless, nanomedicines’ translation has been limited due to their lack of specificity towards cancer cells. Although the nanomaterials’ surface can be coated with targeting ligands, such has been mostly achieved through non-covalent functionalization strategies that are prone to premature detachment. Notwithstanding, cancer cells often establish resistance mechanisms that impair the effect of the loaded drugs. This bottleneck may be addressed by using near-infrared (NIR)-light responsive nanomaterials. The NIR-light triggered hyperthermic effect generated by these nanomaterials can cause irreversible damage to cancer cells or sensitize them to chemotherapeutics’ action. Herein, a novel covalently functionalized targeted NIR-absorbing nanomaterial for cancer chemo-photothermal therapy was developed. For such, dopamine-reduced graphene oxide nanomaterials were covalently bonded with hyaluronic acid, and then loaded with doxorubicin (DOX/HA-DOPA-rGO). The produced nanomaterials showed suitable physicochemical properties, high encapsulation efficiency, and photothermal capacity. The in vitro studies revealed that the nanomaterials are cytocompatible and that display an improved uptake by the CD44-overexpressing breast cancer cells. Importantly, the combination of DOX/HA-DOPA-rGO with NIR light reduced breast cancer cells’ viability to just 23 %, showcasing their potential chemo-photothermal therapy.
Reduced graphene oxide–reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration
Publication . Cabral, Cátia S. D.; Melo-Diogo, Duarte de; Ferreira, Paula; Moreira, André F.; Correia, I.J.
Bone is a mineralized tissue with the intrinsic capacity for constant remodeling. Rapid prototyping techniques, using biomaterials that mimic the bone native matrix, have been used to develop osteoinductive and osteogenic personalized 3D structures, which can be further combined with drug delivery and phototherapy. Herein, a Fab@Home 3D Plotter printer was used to promote the layer-by-layer deposition of a composite mixture of gelatin, chitosan, tricalcium phosphate, and reduced graphene oxide (rGO). The phototherapeutic potential of the new NIR-responsive 3D_rGO scaffolds was assessed by comparing scaffolds with different rGO concentrations (1, 2, and 4 mg/mL). The data obtained show that the rGO incorporation confers to the scaffolds the capacity to interact with NIR light and induce a hyperthermy effect, with a maximum temperature increase of 16.7 °C after under NIR irradiation (10 min). Also, the increase in the rGO content improved the hydrophilicity and mechanical resistance of the scaffolds, particularly in the 3D_rGO4. Furthermore, the rGO could confer an NIR-triggered antibacterial effect to the 3D scaffolds, without compromising the osteoblasts' proliferation and viability. In general, the obtained data support the development of 3D_rGO for being applied as temporary scaffolds supporting the new bone tissue formation and avoiding the establishment of bacterial infections.
Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy
Publication . Lima-Sousa, Rita; Alves, Cátia; Melo, Bruna L.; Costa, Francisco J. P.; Nave, Micaela; Moreira, André F.; Mendonça, António; Correia, I.J.; de Melo-Diogo, Duarte
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel–sol–gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Silica Aerogel-Polycaprolactone Scaffolds for Bone Tissue Engineering
Publication . Pontinha, Ana; Moreira, Eliana Barbosa Da Silva; Melo, Bruna L.; Melo-Diogo, Duarte de; Correia, I.J.; Alves, Patrícia
Silica aerogel is a material composed of SiO2 that has exceptional physical properties when utilized for tissue engineering applications. Poly-ε-caprolactone (PCL) is a biodegradable polyester that has been widely used for biomedical applications, namely as sutures, drug carriers, and implantable scaffolds. Herein, a hybrid composite of silica aerogel, prepared with two different silica precursors, tetraethoxysilane (TEOS) or methyltrimethoxysilane (MTMS), and PCL was synthesized to fulfil bone regeneration requirements. The developed porous hybrid biocomposite scaffolds were extensively characterized, regarding their physical, morphological, and mechanical features. The results showed that their properties were relevant, leading to composites with different properties. The water absorption capacity and mass loss were evaluated as well as the influence of the different hybrid scaffolds on osteoblasts’ viability and morphology. Both hybrid scaffolds showed a hydrophobic character (with water contact angles higher than 90°), low swelling (maximum of 14%), and low mass loss (1–7%). hOB cells exposed to the different silica aerogel-PCL scaffolds remained highly viable, even for long periods of incubation (7 days). Considering the obtained results, the produced hybrid scaffolds may be good candidates for future application in bone tissue engineering.
Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy
Publication . Melo, Bruna L.; Lima-Sousa, Rita; Alves, Cátia; Correia, I.J.; de Melo-Diogo, Duarte
Nanomaterials with near infrared light absorption can mediate an antitumoral photothermal-photodynamic response that is weakly affected by cancer cells’ resistance mechanisms. Such nanosystems are commonly prepared by loading photosensitizers into nanomaterials displaying photothermal capacity, followed by functionalization to achieve biological compatibility. However, the translation of these multifunctional nanomaterials has been limited by the fact that many of the photosensitizers are not responsive to near infrared light. Furthermore, the reliance on poly(ethylene glycol) for functionalizing the nanomaterials is also not ideal due to some immunogenicity reports. Herein, a novel photoeffective near infrared light-responsive nanosystem for cancer photothermal-photodynamic therapy was assembled. For such, dopamine-reduced graphene oxide was, for the first time, functionalized with sulfobetaine methacrylate-brushes, and then loaded with IR780 (IR780/SB/DOPA-rGO). This hybrid system revealed a nanometric size distribution, optimal surface charge and colloidal stability. The interaction of IR780/SB/DOPA-rGO with near infrared light prompted a temperature increase (photothermal effect) and production of singlet oxygen (photodynamic effect). In in vitro studies, the IR780/SB/DOPA-rGO per se did not elicit cytotoxicity (viability > 78 %). In contrast, the combination of IR780/SB/DOPA-rGO with near infrared light decreased breast cancer cells’ viability to just 21 %, at a very low nanomaterial dose, highlighting its potential for cancer photothermal-photodynamic therapy.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

2022.06320.PTDC

ID