Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.16 MB | Adobe PDF |
Authors
Abstract(s)
A energia eólica é uma fonte de energia renovável e sustentável que tem vindo a ganhar
cada vez mais importância nas últimas décadas. As turbinas eólicas são equipamentos
complexos que requerem uma grande quantidade de materiais e energia para serem
produzidas. No entanto, tanto no seu processo produtivo como no final da sua vida útil,
as turbinas eólicas podem representar um impacte significativo no ambiente, se os seus
resíduos não forem geridos adequadamente.
A economia circular é um modelo de produção e consumo que visa reduzir o desperdício
e a poluição, promovendo o reaproveitamento de recursos. O objetivo geral desta
dissertação consistiu em definir e ensaiar uma metodologia de reciclagem dos resíduos
resultantes da produção de pás de rotor, que pudesse ser escalável para ambiente
industrial e que permitisse tornar o setor da energia eólica mais sustentável.
Foram produzidas biqueiras, para serem aplicadas pela indústria do calçado em calçado
de proteção, utilizando resíduos constituídos por fibra de vidro de diferentes gramagens
e partículas com diferentes tamanhos, geometria e composição variada, provenientes da
maquinação mecânica das pás de rotor na fase de acabamento, sendo as mesmas
compostas por fibra de vidro e resina epóxi. Pretende-se com esta solução propor uma
forma viável de valorizar estes resíduos, e contribuir para a redução do impacte
ambiental desta indústria.
Inicialmente, os resíduos foram separados por tamanho e granulometria. Em seguida, a
resina epóxi foi preparada de acordo com as instruções do fabricante. Os resíduos foram
adicionados à matriz epóxi na percentagem ideal determinada por testes.
Posteriormente, a matriz epóxi com os resíduos foi adicionada aos tecidos de fibra de
vidro, de diferentes tipos. Os laminados foram produzidos através do método de
moldação manual, com a aplicação de pressão e calor. Os mesmos foram testados para
determinar as suas propriedades mecânicas e de proteção. As biqueiras foram
produzidas através do mesmo método, utilizando o melhor laminado selecionado. Este
processo permitiu produzir biqueiras com propriedades mecânicas e de proteção
adequadas para serem utilizadas em calçado de proteção.
A adição de 1 wt. % de partículas melhorou as propriedades mecânicas das matrizes, com
uma melhoria de 5,5% na tensão à flexão e 8,0% na rigidez. A caracterização dos laminados revelou que, nos ensaios de flexão em três pontos, os laminados aditivados
apresentaram as melhores propriedades, com uma melhoria de 18,6% na tensão, 7,5%
na rigidez e 10,0% na deformação, em comparação com o laminado de controlo. Em
termos de propriedades, a biqueira de controlo teve uma energia absorvida de 86,51 ?
1,23 J enquanto a biqueira aditivada teve uma energia absorvida de 88,82 ? 0,68 J. A
força máxima na biqueira de controlo foi 10,05 ? 1,70 kN e na biqueira aditivada foi 10,79
? 1,04 kN. Através do teste de compressão, concluiu-se que a biqueira de fibra de vidro
aditivada apresentou maior resistência à compressão do que a biqueira de fibra de vidro
de controlo, com uma diminuição da deformação de 23,1%.
Com base no trabalho desenvolvido, conclui-se que as biqueiras fabricadas em
laboratório estão aptas para serem aplicadas em calçado de proteção, pois segundo a
norma europeia EN ISO 20346:2022, as mesmas garantiram proteção contra impactos
de baixa velocidade a um nível de energia de, pelo menos, 100 J e contra a compressão
quando ensaiadas a uma carga de compressão de, pelo menos, 10 kN.
Wind energy is a renewable and sustainable energy source that has become increasingly important in recent decades. Wind turbines are complex pieces of equipment that require a large amount of materials and energy to produce. However, both in their production process and at the end of their useful life, wind turbines can have a significant impact on the environment if their waste is not managed properly. The circular economy is a model of production and consumption that aims to reduce waste and pollution by promoting the reuse of resources. The general aim of this dissertation was to define and test a methodology for recycling the waste resulting from the production of rotor blades, which could be scaled up to an industrial environment and which would make the wind energy sector more sustainable. Toe caps were produced, to be used by the footwear industry in protective footwear, using waste consisting of glass fibre of different weights and particles of different sizes, geometry and composition, from the mechanical machining of rotor blades in the finishing phase, composed of glass fibre and epoxy resin. The aim of this solution is to propose a viable way of valorising this waste and helping to reduce the environmental impact of this industry. Initially, the waste was separated by size and granulometry. The epoxy resin was then prepared according to the manufacturer's instructions. The waste was added to the epoxy matrix at the optimum percentage determined by tests. Subsequently, the epoxy matrix with the waste was added to glass fibre fabrics of different types. The laminates were produced using the manual moulding method, applying pressure and heat. They were tested to determine their mechanical and protective properties. The toe caps were produced by the same method, using the best laminate selected. This process produced toecaps with mechanical and protective properties suitable for use in protective footwear. The addition of 1 wt. % of particles improved the mechanical properties of the matrices, with a 5.5% improvement in bending stress and an 8.0% improvement in stiffness. Characterisation of the laminates revealed that in the three-point bending tests, the additive laminates showed the best properties, with an 18.6% improvement in tension, 7.5% in stiffness and 10.0% in deformation compared to the control laminate. In terms of properties, the control toe cap had an absorbed energy of 86.51 ? 1.23 J while the additive toe cap had an absorbed energy of 88.82 ? 0.68 J. The maximum force in the control toe cap was 10.05 ? 1.70 kN and in the additive toe cap it was 10.79 ? 1.04 kN. The compression test showed that the additive fibreglass toe cap had greater resistance to compression than the control fibreglass toe cap, with a reduction in deformation of 23.1%. Based on the work carried out, it can be concluded that the toecaps manufactured in the laboratory are suitable for use in protective footwear, as according to the European standard EN ISO 20346:2022, they guarantee protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN.
Wind energy is a renewable and sustainable energy source that has become increasingly important in recent decades. Wind turbines are complex pieces of equipment that require a large amount of materials and energy to produce. However, both in their production process and at the end of their useful life, wind turbines can have a significant impact on the environment if their waste is not managed properly. The circular economy is a model of production and consumption that aims to reduce waste and pollution by promoting the reuse of resources. The general aim of this dissertation was to define and test a methodology for recycling the waste resulting from the production of rotor blades, which could be scaled up to an industrial environment and which would make the wind energy sector more sustainable. Toe caps were produced, to be used by the footwear industry in protective footwear, using waste consisting of glass fibre of different weights and particles of different sizes, geometry and composition, from the mechanical machining of rotor blades in the finishing phase, composed of glass fibre and epoxy resin. The aim of this solution is to propose a viable way of valorising this waste and helping to reduce the environmental impact of this industry. Initially, the waste was separated by size and granulometry. The epoxy resin was then prepared according to the manufacturer's instructions. The waste was added to the epoxy matrix at the optimum percentage determined by tests. Subsequently, the epoxy matrix with the waste was added to glass fibre fabrics of different types. The laminates were produced using the manual moulding method, applying pressure and heat. They were tested to determine their mechanical and protective properties. The toe caps were produced by the same method, using the best laminate selected. This process produced toecaps with mechanical and protective properties suitable for use in protective footwear. The addition of 1 wt. % of particles improved the mechanical properties of the matrices, with a 5.5% improvement in bending stress and an 8.0% improvement in stiffness. Characterisation of the laminates revealed that in the three-point bending tests, the additive laminates showed the best properties, with an 18.6% improvement in tension, 7.5% in stiffness and 10.0% in deformation compared to the control laminate. In terms of properties, the control toe cap had an absorbed energy of 86.51 ? 1.23 J while the additive toe cap had an absorbed energy of 88.82 ? 0.68 J. The maximum force in the control toe cap was 10.05 ? 1.70 kN and in the additive toe cap it was 10.79 ? 1.04 kN. The compression test showed that the additive fibreglass toe cap had greater resistance to compression than the control fibreglass toe cap, with a reduction in deformation of 23.1%. Based on the work carried out, it can be concluded that the toecaps manufactured in the laboratory are suitable for use in protective footwear, as according to the European standard EN ISO 20346:2022, they guarantee protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN.
Description
Keywords
Pás de Rotor de Aerogeradores Plásticos
Reforçados com Fibra de Vidro Reciclagem Resíduos Turbinas Eólicas