| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 5.27 MB | Adobe PDF |
Authors
Abstract(s)
O presente trabalho consiste no projeto de uma pá em compósito de epóxi-fibra de vidro destinada a uma microturbina eólica de eixo horizontal que tem vindo a ser adotada por um vasto número de organizações sem fins lucrativos, com o intuito de ajudar algumas populações a tornarem-se autónomas no que diz respeito ao abastecimento de energia elétrica.
O projeto de construção da pá iniciou-se com o desenho computacional do modelo virtual da pá e dos moldes, seguindo-se o fabrico do molde através de maquinação CNC e, por fim, o fabrico da pá em compósito de epóxi-fibra de vidro.
Foram realizados ensaios relativos à resistência da pá num programa de simulação estrutural com o objetivo de analisar a resposta da pá à força centrífuga e à força aerodinâmica. Compararam-se os resultados obtidos para uma pá em madeira com os de uma pá em compósito de epóxi-fibra de vidro tendo cada uma dois tipos distintos de furação destinada à sua fixação ao gerador. Os resultados obtidos permitiram comparar a tensão máxima existente nas pás, os deslocamentos máximos presentes e os fatores de segurança mínimo que estas apresentam. A pá em compósito de epóxi-fibra de vidro demonstrou ser sempre mais resistente que a pá em madeira pois apresentou um fator de segurança mínimo sempre superior.
This dissertation focuses on an epoxy composite-fiberglass blade design aimed for a horizontal axis micro wind turbine that has been adopted by a large number of non-profit organizations, in order to help some populations become autonomous concerning electricity supply. The blade construction design began with the virtual design of the blade model and mold, followed by the mold manufacture via CNC machining and finally the manufacturing of the epoxy composite - fiberglass blade. Several tests concerning blade resistance were performed in a structural simulation program, with the aim of analyzing the blade response to centrifugal and aerodynamic forces. The results obtained for a wood blade were compared with the ones obtained from a glass fiber blade, each one having two types of drilling for their attachment to the generator. One of the drilling cases has only one hole for attachment and the other case has two holes. The results obtained allowed the comparison, for the two types of blade materials and fastening holes, of the maximum stress on the blades, the maximum existing displacements and the minimum safety factors. The epoxy composite-fiberglass blade proved to be always stronger than the wood blade because it always presented a higher minimum safety factor.
This dissertation focuses on an epoxy composite-fiberglass blade design aimed for a horizontal axis micro wind turbine that has been adopted by a large number of non-profit organizations, in order to help some populations become autonomous concerning electricity supply. The blade construction design began with the virtual design of the blade model and mold, followed by the mold manufacture via CNC machining and finally the manufacturing of the epoxy composite - fiberglass blade. Several tests concerning blade resistance were performed in a structural simulation program, with the aim of analyzing the blade response to centrifugal and aerodynamic forces. The results obtained for a wood blade were compared with the ones obtained from a glass fiber blade, each one having two types of drilling for their attachment to the generator. One of the drilling cases has only one hole for attachment and the other case has two holes. The results obtained allowed the comparison, for the two types of blade materials and fastening holes, of the maximum stress on the blades, the maximum existing displacements and the minimum safety factors. The epoxy composite-fiberglass blade proved to be always stronger than the wood blade because it always presented a higher minimum safety factor.
Description
Keywords
Compósito de Epóxi-Fibra de Vidro Energia Eólica Resistência Estrutural Turbina Eólica
