Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.34 MB | Adobe PDF |
Authors
Abstract(s)
Um desenvolvimento dos métodos de medição ao longo dos anos, deu fruto a uma
tecnologia ótica de medição remota que estuda as propriedades da luz refletida a fim de
calcular as distâncias do meio envolvente.
A tecnologia LiDAR (Light Detection and Ranging) determina a distância a um objeto
através do intervalo de tempo que um pulso laser leva desde a sua emissão à sua receção.
Vários são as áreas de estudo onde esta tecnologia é aplicada. Consoante as mesmas, o
equipamento LiDAR pode ser para uso indoor ou outdoor, e encontrar-se em sistemas
de uma dimensão (1D), duas dimensões (2D) ou três dimensões (3D) fará que consiga
elaborar gradualmente uma representação real do meio envolvente.
Este trabalho tem como objetivo o estudo do comportamento de um LiDAR 2D indoor
de baixo custo nas adversidades de um ambiente outdoor, visando melhorar a captação
de dados em aplicações onde a luz ambiente, temperatura, humidade e reflexões possa
afetar negativamente os resultados. É proposta a obtenção de medições nos diversos
ambientes mencionados anteriormente. O tratamento de dados em MATLAB permite
estudar possíveis erros encontrados.
O primeiro estudo indoor com chapas a 90º, apresentou um erro médio de medição de
0,5%. Mantendo no mesmo ambiente de estudo, o aumento do erro médio para 1,04%,
deveu-se à utilização de chapas a 70º. Aplicando a mesma ordem de ensaio dos objetos
num ambiente outdoor, obtiveram-se erros médios de medição de 1,28% e 0,88%,
respetivamente. Num terceiro grupo de estudo outdoor, sobre contexto real, resultou um
ensaio com incidência solar direta, levando à não identificação dos objetos. Contudo,
quando a incidência solar direta não estava presente, o erro médio de medição era de
1,85%, ainda que com poucos objetos identificados.
Para concluir, a adaptação de sistemas LiDAR indoor de baixo custo em aplicações
outdoor não é aconselhado. Existem ainda muitos desafios a serem superados nesta
tecnologia emergente e revolucionaria.
A development in measurement methods over the years has given rise to an optical remote measurement technology that studies the properties of reflected light to calculate distances from the surroundings. LiDAR (Light Detection and Ranging) technology determines the distance to an object by the time interval that a laser pulse takes from its emission to its reception. Several are the areas of study where this technology is applied. Depending on them, LiDAR equipment can be for indoor or outdoor use, and being in one-dimensional (1D), twodimensional (2D) or three-dimensional (3D) systems will gradually produce a true representation of the surrounding environment. This work aims to study the behavior of a low-cost 2D indoor LiDAR in the adversities of an outdoor environment, aiming to improve data capture in applications where ambient light, temperature, humidity and reflections may negatively affect the results. It is proposed to obtain measurements in the various environments mentioned above. The data processing in MATLAB allows to study possible errors found. The first indoor study with plates at 90º, showed an average measurement error of 0.5%. Maintaining the same study environment, the increase in the average error to 1.04%, was due to the use of 70º plates. Applying the same test order of the objects in an outdoor environment, we obtained average measurement errors of 1.28% and 0.88%, respectively. In a third outdoor study group, in a real context, a test with direct solar incidence resulted in no identification of objects, however, when direct solar incidence was not present, the average error of measurement was 1.85%, although with few objects identified. To conclude, the adaptation of low-cost indoor LiDAR systems to outdoor applications is not advised. There are still many challenges to be overcome in this emerging and revolutionary technology.
A development in measurement methods over the years has given rise to an optical remote measurement technology that studies the properties of reflected light to calculate distances from the surroundings. LiDAR (Light Detection and Ranging) technology determines the distance to an object by the time interval that a laser pulse takes from its emission to its reception. Several are the areas of study where this technology is applied. Depending on them, LiDAR equipment can be for indoor or outdoor use, and being in one-dimensional (1D), twodimensional (2D) or three-dimensional (3D) systems will gradually produce a true representation of the surrounding environment. This work aims to study the behavior of a low-cost 2D indoor LiDAR in the adversities of an outdoor environment, aiming to improve data capture in applications where ambient light, temperature, humidity and reflections may negatively affect the results. It is proposed to obtain measurements in the various environments mentioned above. The data processing in MATLAB allows to study possible errors found. The first indoor study with plates at 90º, showed an average measurement error of 0.5%. Maintaining the same study environment, the increase in the average error to 1.04%, was due to the use of 70º plates. Applying the same test order of the objects in an outdoor environment, we obtained average measurement errors of 1.28% and 0.88%, respectively. In a third outdoor study group, in a real context, a test with direct solar incidence resulted in no identification of objects, however, when direct solar incidence was not present, the average error of measurement was 1.85%, although with few objects identified. To conclude, the adaptation of low-cost indoor LiDAR systems to outdoor applications is not advised. There are still many challenges to be overcome in this emerging and revolutionary technology.
Description
Keywords
Aplicações Outdoor Lidar 2d Lidar Indoor Lidar Lowcost Light Detection and Ranging (Lidar) Medições com Lidar Rplidar A1m8 Sensor Laser Time-of-Flight (Tof)