Logo do repositório
 
Miniatura indisponível
Publicação

Hyers-Ulam-Rassias Stability of Nonlinear Integral Equations Through the Bielecki Metric

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
2018CastroSimoesMMASPostPrint.pdf339.92 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We analyse different kinds of stabilities for classes of nonlinear integral equations of Fredholm and Volterra type. Sufficient conditions are obtained in order to guarantee Hyers‐Ulam‐Rassias, σ‐semi‐Hyers‐Ulam and Hyers‐Ulam stabilities for those integral equations. Finite and infinite intervals are considered as integration domains. Those sufficient conditions are obtained based on the use of fixed point arguments within the framework of the Bielecki metric and its generalizations. The results are illustrated by concrete examples.

Descrição

Palavras-chave

σ‐semi‐Hyers‐Ulam stability Hyers‐Ulam‐Rassias stability Hyers‐Ulam stability Nonlinear integral equation Banach fixed point theorem

Contexto Educativo

Citação

L. P. Castro, A. M. Simões, Hyers-Ulam-Rassias Stability of Nonlinear Integral Equations Through the Bielecki Metric, Math Meth Appl Sci., 2018;1–17.

Unidades organizacionais

Fascículo

Editora

John Wiley and Sons

Licença CC

Métricas Alternativas