Logo do repositório
 
Publicação

Hyers-Ulam-Rassias Stability of Nonlinear Integral Equations Through the Bielecki Metric

dc.contributor.authorSimões, A. M.
dc.contributor.authorCastro, L. P.
dc.date.accessioned2018-04-30T09:09:02Z
dc.date.available2018-04-30T09:09:02Z
dc.date.issued2018
dc.description.abstractWe analyse different kinds of stabilities for classes of nonlinear integral equations of Fredholm and Volterra type. Sufficient conditions are obtained in order to guarantee Hyers‐Ulam‐Rassias, σ‐semi‐Hyers‐Ulam and Hyers‐Ulam stabilities for those integral equations. Finite and infinite intervals are considered as integration domains. Those sufficient conditions are obtained based on the use of fixed point arguments within the framework of the Bielecki metric and its generalizations. The results are illustrated by concrete examples.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationL. P. Castro, A. M. Simões, Hyers-Ulam-Rassias Stability of Nonlinear Integral Equations Through the Bielecki Metric, Math Meth Appl Sci., 2018;1–17.pt_PT
dc.identifier.doiDOI: 10.1002/mma.4857pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/4747
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherJohn Wiley and Sonspt_PT
dc.relationCentro de Matemática e Aplicações da Universidade da Beira Interior (CMA-UBI) [UID/MAT/00212/2013]
dc.subjectσ‐semi‐Hyers‐Ulam stabilitypt_PT
dc.subjectHyers‐Ulam‐Rassias stabilitypt_PT
dc.subjectHyers‐Ulam stabilitypt_PT
dc.subjectNonlinear integral equationpt_PT
dc.subjectBanach fixed point theorempt_PT
dc.titleHyers-Ulam-Rassias Stability of Nonlinear Integral Equations Through the Bielecki Metricpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentro de Matemática e Aplicações da Universidade da Beira Interior (CMA-UBI) [UID/MAT/00212/2013]
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00212%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F04106%2F2013/PT
oaire.citation.endPage17pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleMathematical Methods in the Applied Sciencespt_PT
oaire.fundingStream5876
oaire.fundingStream5876
person.familyNameTavares Simões
person.familyNameCastro
person.givenNameAlberto Manuel
person.givenNameLuis
person.identifier1504027
person.identifier.ciencia-idB71F-0817-C348
person.identifier.ciencia-id7111-EF1A-2B3C
person.identifier.orcid0000-0002-4772-4300
person.identifier.orcid0000-0002-4261-8699
person.identifier.ridA-5442-2008
person.identifier.scopus-author-id35224069500
person.identifier.scopus-author-id7202228678
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2320a91d-1d53-4ffb-a2ca-c18d16908b9b
relation.isAuthorOfPublicationf058cf4f-c113-4121-ae98-4b74ec04ad4b
relation.isAuthorOfPublication.latestForDiscoveryf058cf4f-c113-4121-ae98-4b74ec04ad4b
relation.isProjectOfPublicationea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9
relation.isProjectOfPublication7fc657d9-caa2-4b8d-8126-3febd825bc31
relation.isProjectOfPublication.latestForDiscoveryea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
2018CastroSimoesMMASPostPrint.pdf
Tamanho:
339.92 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: