Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.3 MB | Adobe PDF |
Authors
Abstract(s)
Nos dias de hoje existe um grande contraste entre os preços praticados das próteses para o
membro superior conforme a sua funcionalidade. Explicitando, uma prótese passiva tem
um preço aceitável, todavia esta apenas realiza uma atividade especifica ou possui uma
vertente meramente estética. Por outro lado, uma prótese ativa permite o movimento do
membro superior controlado pelo utilizador proporcionando um conjunto de
funcionalidades muito maior, ainda assim o preço praticado no mercado alcança valores
exorbitantes. Uma alternativa a este cenário poderá ser a impressão 3D, pois uma prótese
concebida com esta tecnologia é capaz de fornecer os movimentos complexos a um preço
acessível. Porém, apesar deste benefício, é possível identificar algumas desvantagens
noutros parâmetros como, por exemplo, na resistência e na dureza. O principal desafio da
engenharia no desenvolvimento de dispositivos protéticos passa pelo dimensionamento de
uma prótese incorporada por atuadores, sensores e outros componentes eletrónicos que
consiga aproximar-se o tanto quanto possível do tamanho e do peso do membro substituído.
Assim sendo, o principal objetivo desta dissertação é dimensionar uma prótese mioelétrica,
tendo em consideração as adversidades que se vivem no panorama das próteses para o
membro superior. No primeiro passo da elaboração deste projeto, após as devidas
considerações, optou-se por servomotores para os atuadores e que o arduino mega 2560
deveria ser responsável pela parte de controlo. Os movimentos realizados pela prótese
foram escolhidos com base nas tarefas essenciais do dia-a-dia. No próximo passo, procedeuse à escolha de quais os melhores mecanismos para a prótese através de várias matrizes de
decisão. De seguida, nomeadamente na etapa de projeto detalhado, foi concebido o CAD do
projeto tendo em consideração a premissa inicial, isto é, foi realizado o desenho 3D das
várias peças constituintes da prótese tendo em consideração as adversidades que se vivem
nos dias de hoje na comercialização de próteses para o membro superior. No final, foi
possível obter uma prótese mioelétrica com um preço muito mais baixo do que o praticado
no mercado, conseguindo ainda assim possuir um grau de funcionalidade bastante elevado.
Nowadays, there is a huge contrast amongst selling prices for upper-limb prostheses according to their functionality. A passive prosthesis has a reasonable price. However, it only does a specific task or has just an aesthetic purpose. On the other hand, an active prothesis is controlled by the user and allows the movement of the upper limb providing a larger set of functionalities, even so the sale price reaches prohibitive values. An alternative to this scenario can be 3D printing, because a prosthesis conceived with this technology is able to provide complex movements at a reasonable price. However, despite this benefit, it is possible to identify some disadvantages in other parameters, such as hardiness and maximum allowable load, amongst others. The main engineering challenge on the development of prosthetic devices is to design a prosthesis incorporating with actuators, sensors and other electronic components that can get as close as possible to the size and weight of the replaced limb. Therefore, the main goal of this study was the design of a myoelectric prosthesis, taking into consideration the adversities that are experienced on the prosthesis panorama for the upper limb. The actuators are servomotors and the arduino mega 2560 is responsible for the control. The movements performed by the prosthesis were chosen, based on essential daily tasks. Using decision matrices, mechanisms that best fit the prothesis were chosen. Computer aided design (CAD) of the project was conceived according to the initial premise, i.e., 3D drawing of the various parts of the prosthesis taking into account the experienced difficulties of upper limb prosthesis business. A low-cost high functionality robotic prosthesis was designed.
Nowadays, there is a huge contrast amongst selling prices for upper-limb prostheses according to their functionality. A passive prosthesis has a reasonable price. However, it only does a specific task or has just an aesthetic purpose. On the other hand, an active prothesis is controlled by the user and allows the movement of the upper limb providing a larger set of functionalities, even so the sale price reaches prohibitive values. An alternative to this scenario can be 3D printing, because a prosthesis conceived with this technology is able to provide complex movements at a reasonable price. However, despite this benefit, it is possible to identify some disadvantages in other parameters, such as hardiness and maximum allowable load, amongst others. The main engineering challenge on the development of prosthetic devices is to design a prosthesis incorporating with actuators, sensors and other electronic components that can get as close as possible to the size and weight of the replaced limb. Therefore, the main goal of this study was the design of a myoelectric prosthesis, taking into consideration the adversities that are experienced on the prosthesis panorama for the upper limb. The actuators are servomotors and the arduino mega 2560 is responsible for the control. The movements performed by the prosthesis were chosen, based on essential daily tasks. Using decision matrices, mechanisms that best fit the prothesis were chosen. Computer aided design (CAD) of the project was conceived according to the initial premise, i.e., 3D drawing of the various parts of the prosthesis taking into account the experienced difficulties of upper limb prosthesis business. A low-cost high functionality robotic prosthesis was designed.
Description
Keywords
Anatomia Cad Impressão 3d Mioelétrica Projeto Prótese Servomotores Transradial