Repository logo
 
Loading...
Profile Picture
Person

Zdravevski, Eftim

Search Results

Now showing 1 - 7 of 7
  • Identification of Daily Activites and Environments Based on the AdaBoost Method Using Mobile Device Data
    Publication . Ferreira, José M.; Pires, Ivan; Marques, Gonçalo; Garcia, Nuno M.; Zdravevski, Eftim; Lameski, Petre; Flórez-Revuelta, Francisco; Spinsante, Susanna
    Using the AdaBoost method may increase the accuracy and reliability of a framework for daily activities and environment recognition. Mobile devices have several types of sensors, including motion, magnetic, and location sensors, that allow accurate identification of daily activities and environment. This paper focuses on the review of the studies that use the AdaBoost method with the sensors available in mobile devices. This research identified the research works written in English about the recognition of daily activities and environment recognition using the AdaBoost method with the data obtained from the sensors available in mobile devices that were published between 2012 and 2018. Thus, 13 studies were selected and analysed from 151 identified records in the searched databases. The results proved the reliability of the method for daily activities and environment recognition, highlighting the use of several features, including the mean, standard deviation, pitch, roll, azimuth, and median absolute deviation of the signal of motion sensors, and the mean of the signal of magnetic sensors. When reported, the analysed studies presented an accuracy higher than 80% in recognition of daily activities and environments with the Adaboost method.
  • Mobile Applications for the Promotion and Support of Healthy Nutrition and Physical Activity Habits: A Systematic Review, Extraction of Features and Taxonomy Proposal
    Publication . Villasana, María Vanessa; Pires, Ivan; Sá, Juliana; Garcia, Nuno M.; Zdravevski, Eftim; Chorbev, Ivan; Lameski, Petre; Flórez-Revuelta, Francisco
    Background: Mobile applications can be used for the monitoring of lifestyles and physical activity. It can be installed in commodity mobile devices, which are currently used by different types of people in their daily activities worlwide . Objective: This paper reviews and categorizes the mobile applications related to diet, nutrition, health, physical activity and education, showing the analysis of 73 mobile applications available on Google Play Store with the extraction of the different features. Methods: The mobile applications were analyzed in relation to each proposed category and their features, starting with the definition of the search keywords used in the Google Play Store. Each mobile application was installed on a smartphone, and validated whether it was researched in scientific studies. Finally, all mobile applications and features were categorized. Results: These mobile applications were clustered into four groups, including diet and nutrition, health, physical activity and education. The features of mobile applications were also categorized into six groups, including diet, anthropometric parameters, social, physical activity, medical parameters and vital parameters. The most available features of the mobile applications are weight, height, age, gender, goals, calories needed calculation, diet diary, food database with calories, calories burned and calorie intake. Conclusion: With this review, it was concluded that most mobile applications available in the market are related to diet, and they are important for different types of people. A promising idea for future work is to evaluate the acceptance by young people of such mobile applications.
  • Activities of Daily Living and Environment Recognition Using Mobile Devices
    Publication . Ferreira, José M.; Pires, Ivan; Marques, Gonçalo; Garcia, Nuno M.; Zdravevski, Eftim; Lameski, Petre; Flórez-Revuelta, Francisco; Spinsante, Susanna; Xu, Lina
    The recognition of Activities of Daily Living (ADL) using the sensors available in off-the-shelf mobile devices with high accuracy is significant for the development of their framework. Previously, a framework that comprehends data acquisition, data processing, data cleaning, feature extraction, data fusion, and data classification was proposed. However, the results may be improved with the implementation of other methods. Similar to the initial proposal of the framework, this paper proposes the recognition of eight ADL, e.g., walking, running, standing, going upstairs, going downstairs, driving, sleeping, and watching television, and nine environments, e.g., bar, hall, kitchen, library, street, bedroom, living room, gym, and classroom, but using the Instance Based k-nearest neighbour (IBk) and AdaBoost methods as well. The primary purpose of this paper is to find the best machine learning method for ADL and environment recognition. The results obtained show that IBk and AdaBoost reported better results, with complex data than the deep neural network methods.
  • Improving Activity Recognition Accuracy in Ambient-Assisted Living Systems by Automated Feature Engineering
    Publication . Zdravevski, Eftim; Lameski, Petre; Trajkovik, Vladimir; Kulakov, Andrea; Chorbev, Ivan; Goleva, Rossitza; Pombo, Nuno; Garcia, Nuno M.
    Ambient-assisted living (AAL) is promising to become a supplement of the current care models, providing enhanced living experience to people within context-aware homes and smart environments. Activity recognition based on sensory data in AAL systems is an important task because 1) it can be used for estimation of levels of physical activity, 2) it can lead to detecting changes of daily patterns that may indicate an emerging medical condition, or 3) it can be used for detection of accidents and emergencies. To be accepted, AAL systems must be affordable while providing reliable performance. These two factors hugely depend on optimizing the number of utilized sensors and extracting robust features from them. This paper proposes a generic feature engineering method for selecting robust features from a variety of sensors, which can be used for generating reliable classi cation models. From the originally recorded time series and some newly generated time series [i.e., magnitudes, rst derivatives, delta series, and fast Fourier transformation (FFT)-based series], a variety of time and frequency domain features are extracted. Then, using two-phase feature selection, the number of generated features is greatly reduced. Finally, different classi cation models are trained and evaluated on an independent test set. The proposed method was evaluated on ve publicly available data sets, and on all of them, it yielded better accuracy than when using hand-tailored features. The bene ts of the proposed systematic feature engineering method are quickly discovering good feature sets for any given task than manually nding ones suitable for a particular task, selecting a small feature set that outperforms manually determined features in both execution time and accuracy, and identi cation of relevant sensor types and body locations automatically. Ultimately, the proposed method could reduce the cost of AAL systems by facilitating execution of algorithms on devices with limited resources and by using as few sensors as possible.
  • Android Library for Recognition of Activities of Daily Living: Implementation Considerations, Challenges, and Solutions
    Publication . Pires, Ivan; Teixeira, Maria Cristina Canavarro; Pombo, Nuno; Garcia, Nuno M.; Flórez-Revuelta, Francisco; Spinsante, Susanna; Goleva, Rossitza; Zdravevski, Eftim
    Background: Off-the-shelf-mobile devices have several sensors available onboard that may be used for the recognition of Activities of Daily Living (ADL) and the environments where they are performed. This research is focused on the development of Ambient Assisted Living (AAL) systems, using mobile devices for the acquisition of the different types of data related to the physical and physiological conditions of the subjects and the environments. Mobile devices with the Android Operating Systems are the least expensive and exhibit the biggest market while providing a variety of models and onboard sensors. Objective: This paper describes the implementation considerations, challenges and solutions about a framework for the recognition of ADL and the environments, provided as an Android library. The framework is a function of the number of sensors available in different mobile devices and utilizes a variety of activity recognition algorithms to provide a rapid feedback to the user. Methods: The Android library includes data fusion, data processing, features engineering and classification methods. The sensors that may be used are the accelerometer, the gyroscope, the magnetometer, the Global Positioning System (GPS) receiver and the microphone. The data processing includes the application of data cleaning methods and the extraction of features, which are used with Deep Neural Networks (DNN) for the classification of ADL and environment. Throughout this work, the limitations of the mobile devices were explored and their effects have been minimized. Results: The implementation of the Android library reported an overall accuracy between 58.02% and 89.15%, depending on the number of sensors used and the number of ADL and environments recognized. Compared with the results available in the literature, the performance of the library reported a mean improvement of 2.93%, and they do not differ at the maximum found in prior work, that based on the Student’s t-test. Conclusion: This study proves that ADL like walking, going upstairs and downstairs, running, watching TV, driving, sleeping and standing activities, and the bedroom, cooking/kitchen, gym, classroom, hall, living room, bar, library and street environments may be recognized with the sensors available in off-the-shelf mobile devices. Finally, these results may act as a preliminary research for the development of a personal digital life coach with a multi-sensor mobile device commonly used daily.
  • Recognition of Activities of Daily Living and Environments Using Acoustic Sensors Embedded on Mobile Devices
    Publication . Pires, Ivan; Marques, Gonçalo; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, Susanna; Teixeira, Maria Canavarro; Zdravevski, Eftim
    The identification of Activities of Daily Living (ADL) is intrinsic with the user’s environment recognition. This detection can be executed through standard sensors present in every-day mobile devices. On the one hand, the main proposal is to recognize users’ environment and standing activities. On the other hand, these features are included in a framework for the ADL and environment identification. Therefore, this paper is divided into two parts—firstly, acoustic sensors are used for the collection of data towards the recognition of the environment and, secondly, the information of the environment recognized is fused with the information gathered by motion and magnetic sensors. The environment and ADL recognition are performed by pattern recognition techniques that aim for the development of a system, including data collection, processing, fusion and classification procedures. These classification techniques include distinctive types of Artificial Neural Networks (ANN), analyzing various implementations of ANN and choosing the most suitable for further inclusion in the following different stages of the developed system. The results present 85.89% accuracy using Deep Neural Networks (DNN) with normalized data for the ADL recognition and 86.50% accuracy using Feedforward Neural Networks (FNN) with non-normalized data for environment recognition. Furthermore, the tests conducted present 100% accuracy for standing activities recognition using DNN with normalized data, which is the most suited for the intended purpose.
  • Recognition of Activities of Daily Living Based on Environmental Analyses Using Audio Fingerprinting Techniques: A Systematic Review
    Publication . Pires, Ivan; Santos, Rui; Pombo, Nuno; Garcia, Nuno M.; Flórez-Revuelta, Francisco; Spinsante, Susanna; Goleva, Rossitza; Zdravevski, Eftim
    An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT).