Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • Enhanced two-phase contention window MAC protocol for wireless sensor networks applications
    Publication . Borges, Luís Miguel Moreira; Velez, Fernando José da Silva; Lebres, António Sérgio Portela
    Nowadays, the user of Wireless Sensor Networks (WSNs) is becoming more and more demanding in terms of choice and diversity of applications. As a consequence, as the diversity of applications continues to grow there is a need to identify and classify the set of detailed characterization parameters that facilitates to sketch up a taxonomy for WSN applications. The proposed taxonomy identi es the services offered by each application makes a tool available to better understand the services and requirements of each application, along with a holistic overview of the WSN proposed application taxonomy. The research also involved the actual development of WSN applications within different research projects, namely in the elds of healthcare (Smart Clothing), civil engineering structure monitoring (INSYSM) and precision agriculture. Different medium access control mechanisms employ different collision avoidance schemes to cope with packet collision and retransmission, trading-off complexity, energy inef ciency and control of packet overhead. In particular, this PhD thesis addresses the study the packet collision probability for a MAC protocol that employs a collision avoidance mechanism with two contention window and consequent proposal of a model for the collision probability. Simulation results validate the model for saturated traf c. For unsaturated traf c and with a small number of nodes, the accuracy of the model is limited by numerical rounding. It is shown that, by using our analytical model, we have been able to obtain performance metrics such as network throughput and average service time for the successful transmissions. In addition, the Enhanced Reliability Decision Algorithm in the physical layer has been proposed. The frame capture effect (FC) feature has been implemented in the IEEE 802.15.4 compliant physical layer of the MiXiM framework. The proposed decision algorithm utilizes the Signal to Noise-plus-Interference ratio (SNIR) and the size of the packet to guarantee the delivery with certain reliability to the MAC layer, of a packet received at the PHY layer. A gain of more than 10 % has been achieved in the delivery ratio. Promising results have also been obtained for the SCP-MAC protocol with the FC effect enabled, for different values of reliability. As one of the main contributions of this thesis, an innovative ef cient multi-channel MAC protocol, based on SCP-MAC, was proposed, the so-called Multi-Channel Scheduled Channel Polling (MC-SCP-MAC) protocol. The in uential range concept, denial channel list (which considers the degradation metric of each slot channel), extra resolution phase algorithm and frame capture effect have been explored to achieve the maximum performance in terms of delivery ratio and energy consumption. It has been shown MC-SCP-MAC outperforms SCP-MAC and MC-LMAC in denser scenarios, with improved throughput fairness. Considering the in uential range concept reduces the redundancy level in the network facilitating to reduce the energy consumption whilst decreasing the latency. The conclusions from this research reveal the importance of an appropriate design for the MAC protocol for the desired WSN application. Depending on the objective or mission of the WSN application, different protocols are required. Therefore, the overall performance of a WSN application certainly depends on the appropriate development and application of the appropriate communication protocols (e.g., MAC, network layer).
  • Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation
    Publication . Barroca, Norberto; Velez, Fernando J.; Borges, Luís M.; Chatzimisios, Periklis
    IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.
  • Taxonomy for Wireless Sensor Networks Services Characterisation and Classification
    Publication . Borges, Luís M.; Velez, Fernando José; Lebres, António S.
    Nowadays, the users of Wireless Sensor and Actuator Networks (WSAN) are becoming more and more demanding in terms of choice and diversity of applications, and the identification of their characterization parameters is thus in order. This paper describes the WSAN characterization parameters and is an update of a previous work, but new parameters were added and new characteristics were proposed. The gathering of all these parameters allowed us to sketch up taxonomy for WSAN via an application-oriented approach, identifying the services offered by each application. For comparison purposes, tables with details from different projects in the field of WSAN are presented.
  • Block acknowledgment in IEEE 802.15.4 by employing DSSS and CSS PHY layers
    Publication . Barroca, Norberto; Borges, Luís M.; Velez, Fernando J.; Chatzimisios, Periklis
    The IEEE 802.15.4 standard has been widely accepted as the de facto standard for Wireless Sensor Networks (WSNs), since it provides ultra-low complexity, cost and energy consumption for low-data rate wireless connectivity. However, one of the fundamental reasons for the IEEE 802.15.4 Medium Access Control (MAC) inefficiency is overhead. In the context of our research, we demonstrate that WSNs may benefit from packet concatenation. In this paper we introduce and study the employment of a block acknowledgment mechanisms in order to achieve enhanced channel efficiency in IEEE 802.15.4 nonbeacon-enabled networks for both the Chirp Spread Spectrum (CSS) and Direct Sequence Spread Spectrum (DSSS) Physical (PHY) layers for the 2.4 Industrial, Scientific and Medical (ISM) frequency band. The proposal of the two new innovative MAC sublayer mechanisms can also be considered as a future possible contribution to the standard itself. The throughput and delay performance is mathematically derived under ideal conditions, (i.e., a channel environment without transmission errors). The performance of the proposed schemes is compared against the IEEE 802.15.4 standard through extensive simulations by employing the OMNeT++ simulator. We demonstrate that, for both PHY layers, the network performance is significantly improved in terms of throughput, end-to-end delay and bandwidth efficiency.
  • IEEE 802.15.4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation
    Publication . Barroca, Norberto; Borges, Luís M.; Velez, Fernando J.; Chatzimisios, Periklis
    IEEE 802.15.4 Medium Access Control (MAC) layer does not include the Request-To-Send/Clear-To-Send (RTS/CTS) handshake mechanism, in order to overcome the hidden node problem that affects Wireless Sensor Networks (WSNs). In this paper we propose and analyse the use of RTS/CTS in IEEE 802.15.4 for the nonbeacon-enable mode. The proposed solution shows that by considering the RTS/CTS mechanism combined with packet concatenation we improve the network performance in terms of maximum throughput, minimum delay and bandwidth effciency. In IEEE 802.15.4 with RTS/CTS, the backoff procedure process is not repeated for each data packet sent unlike the basic access mode of IEEE 802.15.4, but only for each RTS/CTS set. Therefore, the channel utilization is maximized by decreasing the deferral time period before transmitting a data packet. Our work introduces an analytical model capable of accounting the retransmission delay and the maximum number of backoff stages. The successful validation of our analytical model is carried out by comparison against simulation results by using the OMNeT++ simulator.