Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- Removal of organic matter and nitrogen in an horizontal subsurface flow (HSSF) constructed wetland under transient loadsPublication . Albuquerque, Antonio; Arendacz, M.; Gajewska, M.; Obarska-Pempkowiak, Hanna; Randerson, Peter; Kowalik, P.A monitoring campaign in a horizontal subsurface flow constructed wetland under the influence of transient loads of flow-rate, organic matter, nitrogen and suspended solids showed an irregular removal of COD and TSS and lower both removal efficiencies and mass removal rates than the ones observed in other studies for similar operating conditions. This circumstance is associated to the presence of large amount of particulate organic matter from non-point sources. The mass removal rate of ammonia increased 39% as both the water and soil temperatures increased from weeks 1–8 to weeks 9–14. A good correlation between mass load and mass removal rate was observed for all measured parameters, which attests a satisfactory response of the bed under to transient load.
- Analysis of constructed wetland performance for irrigation reusePublication . Monte, Helena Marecos do; Albuquerque, AntonioMost of the wastewater treatment systems in small rural communities of the Cova da Beira region (Portugal) consist of constructed wetlands (CW) with horizontal subsurface flow (HSSF). It is believed that those systems allow the compliance of discharge standards as well as the production of final effluents with suitability for reuse. Results obtained in a nine-month campaign in an HSSF bed pointed out that COD and TSS removal were lower than expected. A discrete sampling also showed that removal of TC, FC and HE was not enough to fulfill international irrigation goals. However, the bed had a very good response to variation of incoming nitrogen loads presenting high removal of nitrogen forms. A good correlation between mass load and mass removal rate was observed for BOD5, COD, TN, NH4-N, TP and TSS, which shows a satisfactory response of the bed to the variable incoming loads. The entrance of excessive loads of organic matter and solids contributed for the decrease of the effective volume for pollutant uptake and therefore, may have negatively influenced the treatment capability. Primary treatment should be improved in order to decrease the variation of incoming organic and solid loads and to improve the removal of COD, solids and pathogenic. The final effluent presented good physical–chemical quality to be reused for irrigation, which is the most likely application in the area.
- Effect of aeration on steady-state conditions in non- and partially aerated low-loaded biofilterPublication . Albuquerque, Antonio; Gonzalez-Martinez, A.; Osorio, FranciscoExcessive growth of biomass and retention of solids associated with air bubbles lead to bed clogging, which affects the biofilters' performance. Two experiments were carried out in a submerged biofilter at the flow velocity of 0.5 m h(-1), for an organic loading rate of 51 g C m(-3) h(-1) and a nitrogen loading rate of 13 g NH4-N m(-3) h(-1), one with the biofilter not aerated, the other with the biofilter partially aerated. The results showed that the higher head losses occurred in the upper section of the biofilter, where there was a greater biomass development and a higher removal of organic carbon, ammonia and solids, with the maximum allowed head loss being reached in 16 and 8 days. In any case, the steady-state conditions were achieved after 2 days and were interrupted on the tenth day of experiment E1 and on the fifth day of experiment E2. This allowed defining different operating cycles that enabled an average organic removal rate of 12.7 g C m(-3) h(-1) (27 %) and an average ammonia removal rate of 1.1 g NH4-N m(-3) h(-1) (9 %) without aeration, and of 35.8 g C m(-3) h(-1) (76 %) and 6.3 g NH4-N m(-3) h(-1) (51 %) with aeration. Regardless of the aeration conditions, more than 90 % of TOC and NH4-N removal occurred in the upper section. After the backwashing cycle, the biofilter returned to steady-state conditions in 6 h (without aeration) and 7 h (with aeration).
- Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: Redox potential in the root zonePublication . Bialowiec, Andrzej; Albuquerque, Antonio; Davies, Laura; Randerson, PeterThis study investigated the effects of reed and willow on bioremediation of landfill leachate in comparison with an unplanted control by measuring redox potential levels in the rhizosphere of microcosm systems in a greenhouse. Plants had a significant influence on redox potential relative to the plant-less system. Redox potential in the reed rhizosphere was anoxic (mean -102 +/- 85 mV), but it was the least negative, being significantly higher than in the willow (mean -286 +/- 118 mV), which had the lowest Eh. Redox potential fluctuated significantly in the willow rhizosphere during daylight hours, with large decreases in the morning. Levels of NH4+ decreased significantly in the first day of the experiment and remained at similar low levels in all three variants for the next four weeks of the experiment. Following this removal of ammonia significant peaks in NO2- occurred in the control and reed tanks on the 1st day, and again on 14th day in the control tank up to 13 mg/dm(3). In the willow tank there was also one significant peak of NO2- in the first week, but only up to 0.5 mg/dm(3). Significant accumulation, within 21 days of NO3- in all variants was observed, but in tanks with reed and willow the concentration of NO3- remained significantly lower (<4 mg/dm(3)) than in the unplanted tank (similar to 35 mg/dm(3)). Final levels of total-nitrogen, nitrate and chemical oxygen demand were considerably lower in the reed and willow tank than in the unplanted tank.
- Biological and technical study of a partial-SHARON reactor at laboratory scale: effect of hydraulic retention timePublication . Gonzalez-Martinez, A.; Calderon, K.; Albuquerque, Antonio; Hontoria, E.; Gonzalez-Lopez, J.; Guisado, I.; Osorio, FranciscoThis study was on the technical and biological characteristics of a partial-SHARON submerged-filter bioreactor of 3 L. The main focus was the influence of the hydraulic retention time (HRT) on biofilms. For this purpose, we used molecular tools based on the partial 16S rRNA genes. The results showed that the HRT may affect the nitrification processes of a bioreactor using synthetic wastewater containing 600 mg/L of ammonia. It was found that an HRT of 0.5 day transformed 100 % of the ammonium into nitrite. However, when the HRT was decreased to 0.4 day, there was a significant reduction (35 %) in the quantity of ammonia transformed, which confirmed the complexity of the system operation. Moreover, a PCR-TGGE approach highlighted the differences observed. The results obtained showed that an HRT of 0.5 day reduced bacterial biodiversity in the biofilms, which were mainly formed by Nitrosomonas and Diaphorobacter. In contrast, an HRT of 0.4 day facilitated the formation of heterogeneous biofilms formed by nitrifying bacteria, such as Nitrosomonas sp., Nitrosospira sp., and Nitrosovibrio sp.).
- Investigations of nitrogen removal pathways in a biological packed bed reactor using elementary mass balancesPublication . Albuquerque, Antonio; Makinia, Jacek; Pagilla, KrishnaNitrogen cycle involves a complex set of potential biochemical pathways with reactions catalyzed by different microorganisms. Elementary mass balances for COD, DO, NH4-N and alkalinity were conducted and stoichiometric relationships were investigated to explain possible pathways of the nitrogen removal mechanisms in a lab-scale submerged down flow biological packed bed (BPB) reactor. Four sets of experiments were performed by modifying the organic loading and C/N ratio in comparison with steady-state conditions. Approximately 90% of COD and NH4-N removal occurred in two upper sections occupying 1/5 of the reactor height. The elementary mass balances could not explain all the experimental results with respect to nitrogen removal and oxygen consumption by known mechanisms. The mass balance calculations, excluding the possibility of nitrification, were in general in accordance with the observations indicating no or minimal NO3-N production. The theoretical stoichiometric requirements for nitrification reaction were satisfied in 6 experiments and in another 8 experiments nitrification may have occurred, but stoichiometry was not satisfied. Using C/N ratio as the variable, only at C/N ratio = 10, the predictions confirmed the possibility of nitrification in the same 3 (out of 4) assays as observed in practice. The results of this study reveal that the nitrogen transformations occurring in the studied reactor are complex and cannot be explained by simple mechanisms of microbial assimilation and nitrification
- Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filterPublication . Albuquerque, Antonio; Makinia, Jacek; Pagilla, KrishnaA submerged biological aerated filter (BAF) partially aerated was used to study the removal of low concentrations of ammonia nitrogen (0.3 g N/m3 to 30.5 g N/m3) typically found in nutrient enriched river and lake waters, and treated effluents. Four series of experiments were performed with a synthetic wastewater at ammonia loading rates between 6 g N/m3 d and 903 g N/m3 d and C/N ratios from 2 to 20. The results showed that ammonia removal rates reached higher values (172 g N/m3 d to 564 g N/m3 d) for C/N = 2 and lower values (13.6 g N/m3 d to 34.6 g N/m3 d) for C/N = 20. Between 50% and 70% of the ammonia was removed in the upper section of the BAF, where the dissolved oxygen (DO) concentration was over 2.1 g O2/m3 and the biofilm depth ranged from 0.4 to 0.6 mm. At the bottom section of the reactor, simultaneous removal of ammonia and nitrate was observed at the DO concentrations in the range 0.4 g O2/m3 to 0.8 g O2/m3. There was no removal of ammonia nitrogen for loads below 15 g N/m3.d. The results indicate that the removal of nitrogen in partially aerated BAF may not only be explained by the conventional mechanisms of nitrification/denitrification.