Repository logo
 
Publication

Statistical analysis of an in-vehicle image-based data collection method for assessing airport pavement condition

datacite.subject.fosEngenharia e Tecnologia::Engenharia Civil
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorFeitosa, Ianca Teixeira
dc.contributor.authorSantos, Bertha
dc.contributor.authorGama, Jorge
dc.contributor.authorAlmeida, Pedro G.
dc.date.accessioned2026-01-13T15:12:17Z
dc.date.available2026-01-13T15:12:17Z
dc.date.issued2025-05-14
dc.description.abstractThis study presents a comprehensive comparative statistical analysis to validate a novel in-vehicle image-based method for collecting pavement condition data in airport environments. It highlights the method’s potential to address key challenges faced by airport pavement managers, such as the need for continuous maintenance and the demand for fast, effective, and reliable inspection procedures. The in-vehicle system integrates laser scanning systems, image capture, and georeferencing devices to collect pavement distress data, and its accuracy and reliability are evaluated statistically. The primary objective is to validate and enhance this novel inspection approach, which shows strong potential as an effective alternative for comprehensive pavement evaluation, enabling continuous, rapid monitoring and the analysis of trends. Validation was performed by means of a detailed statistical comparison of pavement distress density on the main runway of Amílcar Cabral International Airport, Sal Island, Cape Verde, based on data collected using the proposed in-vehicle and the traditional on-foot inspection methods. Non-parametric repeated measures analysis (nparLD) showed statistically similar results between methods for 9 of 12 distress type-severity combinations (4 types × 3 levels), especially for medium and high severity cases, and that pavement section and method-section factors were significant in 10 and 9 of 12 cases, respectively, indicating spatial variability. Kruskal-Wallis tests were applied to each method separately. Significant section-based differences were found in 11 of 12 cases for the traditional method and in 2 of 12 cases for the in-vehicle image-based method, indicating greater sensitivity of the on-foot inspection to spatial variation in distress distribution. These findings support the statistical validation of the proposed method for practical application in airport pavement management. Furthermore, the comprehensive analysis, which included correlation and autocorrelation studies, revealed a bias in severity level assignment during traditional on-foot inspections. The findings highlight time-efficiency gains with the image-based method and suggest improvements, such as enhancing image quality and providing inspector training to increase the accuracy of severity level classification. These results offer valuable insights for airport pavement managers, contributing to improved safety, operational efficiency, and resilience in the face of growing air traffic demands.por
dc.identifier.citationFeitosa, I., Santos, B., Gama, J., & Almeida, P. G. (2025). Statistical analysis of an in-vehicle image-based data collection method for assessing airport pavement condition. Case Studies in Construction Materials, e04792. https://doi.org/10.1016/j.cscm.2025.e04792
dc.identifier.doi10.1016/j.cscm.2025.e04792
dc.identifier.issn2214-5095
dc.identifier.urihttp://hdl.handle.net/10400.6/19654
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationGeoBioSciences GeoTechnologies and GeoEngineering
dc.relationGeoBioSciences GeoTechnologies and GeoEngineering
dc.relationCivil Engineering Research and Innovation for Sustainability
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S221450952500590X?via%3Dihub
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAirport pavement inspection
dc.subjectPavement distress
dc.subjectData collection
dc.subjectImage processing
dc.subjectStatistical methods
dc.subjectnparLD test
dc.subjectSpearman’s correlation
dc.titleStatistical analysis of an in-vehicle image-based data collection method for assessing airport pavement conditioneng
dc.typeresearch article
dspace.entity.typePublication
oaire.awardTitleGeoBioSciences GeoTechnologies and GeoEngineering
oaire.awardTitleGeoBioSciences GeoTechnologies and GeoEngineering
oaire.awardTitleCivil Engineering Research and Innovation for Sustainability
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04035%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04035%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FECI%2F04625%2F2019/PT
oaire.citation.issuee04792
oaire.citation.titleCase Studies in Construction Materials
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFeitosa
person.familyNameSantos
person.familyNameGama
person.familyNameAlmeida
person.givenNameIanca Teixeira
person.givenNameBertha
person.givenNameJorge Manuel Reis
person.givenNamePedro Gabriel de Faria Lapa Barbosa de
person.identifier0000000070515684
person.identifier.ciencia-id1C10-F48D-7D62
person.identifier.ciencia-idBE1A-879F-8282
person.identifier.ciencia-idE81F-1C44-F08D
person.identifier.ciencia-id1117-C2D6-DA23
person.identifier.orcid0000-0002-6060-8128
person.identifier.orcid0000-0002-5545-892X
person.identifier.orcid0000-0003-3926-580X
person.identifier.orcid0000-0003-2810-5966
person.identifier.scopus-author-id57218645977
person.identifier.scopus-author-id54880406000
person.identifier.scopus-author-id12796214600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationa800c805-51e4-4fbc-ba1a-6c50b4abd1ae
relation.isAuthorOfPublication444d1a96-ae0d-4778-93d1-8fcbf30ec96a
relation.isAuthorOfPublication4b605a0e-d32e-4d60-9e39-0290f57c3ff6
relation.isAuthorOfPublication1b3dce01-0969-45a4-a37d-366d76578f94
relation.isAuthorOfPublication.latestForDiscoverya800c805-51e4-4fbc-ba1a-6c50b4abd1ae
relation.isProjectOfPublication0e46c0fb-68e3-4bd3-ae7f-bc613560c05c
relation.isProjectOfPublication69e38057-6048-406e-bcb8-1b65053bb6e1
relation.isProjectOfPublication35d46e29-713d-4f9d-b05e-63e0f82e37d0
relation.isProjectOfPublication.latestForDiscovery0e46c0fb-68e3-4bd3-ae7f-bc613560c05c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S221450952500590X-main.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: